boominator
1月前
A New Reckoning for Nuclear Energy
The U.S. is softening towards the idea of building a new fleet of nuclear reactors.
By Matteo Wong
December 2, 2024
This spring kicked off the best stretch for America’s nuclear industry in decades. It started in April, when, for the first time since 1990, the United States added nuclear capacity for the second year in a row. In June, Congress passed a major law to accelerate nuclear-energy development. The Republican Party’s national platform trumpeted nuclear power, as did Kamala Harris in describing her economic agenda; this fall, three of the world’s largest companies—Amazon, Google, and Microsoft—announced substantial investments in nuclear-energy facilities. In November, the U.S. issued official goals to massively expand its nuclear capacity. “We have ambitious targets for the next 10 years,” Michael Goff, the acting assistant secretary of the Department of Energy’s Office of Nuclear Energy, told me, as well as for the decade after. The DOE aims to add roughly 60 times more nuclear power in a quarter century than the country built in the previous one.
As recently as 15 years ago, or perhaps even five, imagining all of this would have been a stretch. For decades, the industry was stagnant and vehemently opposed by environmentalists. But nuclear energy—a potential source of abundant, reliable, emissions-free electricity—is a powerful tool to fight climate change, and now the federal government, major companies, and a growing number of climate advocates are supporting a series of nuclear-energy projects that could transform America’s grid. This is at least the country’s third attempt to do so—the original push to install a nationwide fleet of reactors ground to a spectacular halt in the 1980s, and a so-called nuclear “renaissance” in the late 2000s, which included dozens of proposed reactors, also failed to materialize. This round, “the industry itself has really got to deliver,” Goff said. The next few years might be the country’s last chance to get nuclear right.
America’s opposition to nuclear power runs deep. Some of the oldest and most influential environmental groups, including Greenpeace, the Sierra Club, and the Natural Resources Defense Council, have long opposed the fallout from nuclear-weapons testing and, as an extension, the environmental risk of nuclear-power plants. Broader public attitudes turned against nuclear power when Pennsylvania’s Three Mile Island facility suffered a meltdown in 1979. The Democratic Party officially opposed new nuclear plants the following year, and after the Chernobyl accident in 1986, nearly three-quarters of Americans said they were against the building of a nuclear plant within five miles of their home.
Economic factors might have doomed nuclear build-out anyway. Energy companies did build many nuclear-power plants in the 1970s—and those plants still provide about one-fifth of the United States’ electricity today—but skyrocketing costs and interminable construction delays, combined with plateauing electricity demand, eventually made new facilities unattractive investments. The emergence of cheap natural gas in the 2000s has helped doom any nuclear growth since, Jessica Lovering, an expert on nuclear economics and the executive director of the Good Energy Collective, told me. (The Great Recession also helped squelch plans for new facilities, she said.)
The result has been that, from 1979 to 1988, 67 reactors were canceled; for more than three decades, the nation has added barely any new nuclear capacity. The reactors that did open were years behind schedule. Beginning in the 1960s, the number of nuclear-engineering degrees granted each year steadily climbed, to a peak of roughly 1,500 in 1978, then plummeted to fewer than 400 by 2000.
But then, slowly, Americans started studying nuclear engineering again. When Kathryn Huff, who led the U.S. Office for Nuclear Energy for two years prior to Goff, finished her Ph.D. in 2013, more than 1,000 nuclear-engineering degrees were being issued annually, a number that has remained roughly steady since. Huff now teaches nuclear engineering at the University of Illinois at Urbana-Champaign, and she told me that the motivation of her own cohort and her students is clear: “The reason people are in nuclear now is the environment.”
Beginning in the 2000s, greenhouse-gas emissions and all their consequences for the planet were becoming a pressing concern for growing numbers of scientists, government officials, and even corporations. The link between commercial nuclear power and the Cold War and nuclear radiation had faded; more people learned that the technology was safer than fossil fuels, or even wind power, measured by deaths per unit of energy produced. As more places in the U.S. started building more renewable energy, experts found that a decarbonized grid running purely on solar panels and wind turbines might be impossible, or prohibitively expensive. The Department of Energy estimates, for instance, that each unit of energy from a renewable grid with nuclear power will cost 37 percent less than from a grid without. Huff told me her students “understand how much carbon-free power we need, and that’s what’s driving them into nuclear energy—and that’s also what’s happening in the Democratic Party.”
In the past decade or so, more scientists and advocacy organizations began to mobilize around nuclear power. The Clean Air Task Force, for instance, concluded that nuclear energy was the “most advanced and proven” source of carbon-free, weather-independent power, the group’s executive director, Armond Cohen—who was a staunch anti-nuclear activist in the 1980s—told me. In 2015, four of the world’s most influential climate scientists wrote an editorial in The Guardian that called nuclear energy “the only viable path forward on climate change.” A 2018 United Nations special report found that limiting global warming to 1.5 degrees Celsius above preindustrial levels would require “unprecedented changes”—including in the world’s energy systems, which made nuclear, as a scalable source of copious and clean electricity, still more appealing.
The support for nuclear power in the U.S.—particularly among climate advocates—is far from unequivocal, but relative to a couple of decades ago, it represents an epochal shift, Ted Nordhaus, an early nuclear-energy advocate and the executive director of the Breakthrough Institute, an environmental research center that promotes nuclear energy, told me. In 2020, the Democratic Party’s platform endorsed nuclear energy for the first time since 1972. Bernie Sanders is a long-standing opponent of nuclear energy, but the Biden-Sanders Unity Taskforce—a group formed to unify the party’s more moderate and radical wings in 2020—listed nuclear as a key technology for combatting climate change. Federal efforts to build nuclear energy have run through the Bush, Obama, Trump, and Biden presidencies. Republicans have long supported nuclear as a matter of energy security and reliability; President Joe Biden’s Inflation Reduction Act includes substantial incentives for nuclear projects. Billions of dollars in corporate investment have gone to nuclear facilities and start-ups. Similar support exists across states as politically varied as Texas, California, Pennsylvania, and New York.
One more factor has propelled the nuclear industry. After decades of relatively flat power use nationwide, AI and data-center growth are sending projections for electricity demand soaring upward, Goff said. Because many of the companies operating large data centers have made substantial climate commitments, they need abundant sources of carbon-free electricity, and see nuclear as the quickest and most reliable way of generating it. These giant tech firms appear willing to pay above-market rates to get those new nuclear-power sources up and running. “I just can’t think of any precedent for it,” Matt Bowen, a nuclear-energy researcher at Columbia, told me.
Still, to speak of a nuclear “revival” might be premature—it’s more accurate to say that the industry is approaching an inflection point. To meet its ambitious nuclear targets, Goff said, the U.S. will likely need a mixture of existing and more experimental reactors. The next several years will be crucial for demonstrating that America can build a large nuclear fleet. Two recently completed reactors at a Georgia power plant—the project that made 2023 and 2024 the first consecutive years of added nuclear capacity in decades—have made that facility the nation’s largest single source of clean energy, but both were years behind schedule.
Meanwhile, the “advanced nuclear” projects drawing attention from the federal government and tech companies will need to prove their case. These technologies, Lovering said, are smaller and simpler than the behemoth facilities of old, which should reduce costs and construction times. But more advanced nuclear technologies have been the industry’s promised future for decades now, and yet have never made the leap to regular deployment in the U.S. And the first commercial deployments will be expensive (efficiency gains and savings will likely accompany later iterations). Experts I spoke with had mixed opinions about whether a Republican-controlled government will continue the generous loans and tax incentives the initial projects depend on.
Perhaps the greatest risk is that expectations are too high—that politicians and tech companies hope to be awash in abundant, cheap, nuclear-generated electricity within five years, instead of 10 or 20. An industry with so many decades of setbacks and failures cannot afford many more; if nuclear power really is so vital to decarbonization, then neither can the climate. The door is open for nuclear power, Cohen told me. “The question is whether we can have an industry that can walk through.”
boominator
2月前
US plans to triple nuclear power by 2050
Shannon Stapleton/File Photo/Reuters
The News
US President Joe Biden’s outgoing administration released its roadmap for tripling nuclear energy capacity by 2050, citing the ”critical role? nuclear power is poised to play in the green transition.
The net new capacity gains would come from multiple sources, the roadmap said, including new plants and restarted and upgraded reactors.
The US’ northern neighbor also has nuclear ambitions: Canada hopes to become a ”one-stop shop? for nuclear material, the BBC reported, making it a uranium “superpower.”
Trump may back nuclear energy, but subsidy cuts could harm expansion
President-elect Donald Trump is expected to try to undo many of his predecessor’s efforts to slash greenhouse gas emissions, but nuclear energy might be the exception, as it enjoys bipartisan support and backing from tech firms that want to use it to power their data centers, The Verge reported. However, Trump has himself flip-flopped on the issue, telling podcaster Joe Rogan in October that nuclear energy is too expensive and carries “dangers.” Trump’s ally Robert F. Kennedy has also opposed federal nuclear energy subsidies, and the incoming administration’s likely focus on spending cuts is “a concern for a lot of potential customers” of advanced nuclear energy, the executive director of a pro-nuclear advocacy group told Utility Dive.
Nuclear energy isn’t a panacea to the climate crisis
Tech companies need round-the-clock nuclear energy to power their data centers, and advanced nuclear reactors require substantial upfront capital investment, which tech heavyweights are well-placed to provide, experts argued for the Atlantic Council. But even if nuclear energy meets the needs of tech companies, some argue that it doesn’t meet the needs of the green transition: Cheaper options provide more emissions reductions per dollar, and the time it takes to build a nuclear plant is “incompatible with the urgent demands of climate science,” the author of a book on the subject told the University of British Columbia. Still, nuclear energy remains one of many important levers at our disposal, the director general of the International Atomic Energy Agency argued for the World Economic Forum.
FACT-MASTER
2月前
LTBR: Press release of interest dated June 25/24:
Lightbridge Welcomes Passage of the ADVANCE Act, Landmark Legislation to Expedite Commercial Deployment of Advanced Nuclear Fuel and Other Advanced Nuclear Technologies
RESTON, Va., June 25, 2024 (GLOBE NEWSWIRE) -- Lightbridge Corporation (“Lightbridge”) (Nasdaq: LTBR), an advanced nuclear fuel technology company, applauds the passage of the ADVANCE Act, or the Accelerating Deployment of Versatile, Advanced Nuclear for Clean Energy Act, which aims to accelerate the deployment of advanced nuclear energy in the United States. Earlier this year, the U.S. House of Representatives passed the bill on a 365-36 vote, and the U.S. Senate overwhelmingly voted 88-2 to approve the legislation.
The ADVANCE Act focuses on streamlining the regulatory process at the Nuclear Regulatory Commission (NRC), supporting the development and deployment of new nuclear technologies, and strengthening the domestic nuclear supply chain.
Seth Grae, President & CEO of Lightbridge Corporation, commented, "We are thrilled to see the ADVANCE Act pass with such overwhelming support in both the House and the Senate. While the Act does not remove all hurdles facing deployment of advanced nuclear technologies, this landmark legislation marks a significant step forward for the nuclear industry and reinforces the critical role of advanced nuclear technologies in our clean energy future. By streamlining regulatory processes, supporting the development of innovative nuclear technologies, and strengthening the domestic supply chain, the ADVANCE Act paves the way for a more financially sustainable and competitive nuclear energy landscape in the United States.”
"We are particularly encouraged by the expedited NRC licensing process for advanced nuclear fuel technologies. The Act directs the NRC to establish an initiative to enhance preparedness and coordination with respect to qualification and licensing of advanced nuclear fuel. The Act also specifically calls for government agency coordination relating to enabling the testing and demonstration of accident tolerant fuels for existing commercial nuclear reactors and also directs the NRC to assess the preparedness of the NRC to review and qualify use of accident tolerant fuel and high-assay low-enriched uranium fuels. The NRC’s inclusion of Lightbridge Fuel™ on its website under Longer Term Accident Tolerant Fuel Technologies (https://www.nrc.gov/reactors/power/atf/technologies/longer-term.html) is a testament to the innovative potential of our fuel technology. We expect this accelerated pathway will lead to expediting licensing of Lightbridge Fuel for commercial use when it is in the NRC licensing process," concluded Mr. Grae.
About?Lightbridge Corporation
Lightbridge Corporation (NASDAQ: LTBR) is focused on developing advanced nuclear fuel technology essential for delivering abundant, zero-emission, clean energy and providing energy security to the world. The Company is developing Lightbridge Fuel™, a proprietary next-generation nuclear fuel technology for existing light water reactors and pressurized heavy water reactors, significantly enhancing reactor safety, economics, and proliferation resistance. The Company is also developing Lightbridge Fuel for new small modular reactors (SMRs) to bring the same benefits plus load-following with renewables on a zero-carbon electric grid.
Lightbridge has entered into two long-term framework agreements with Battelle Energy Alliance LLC, the United States Department of Energy’s operating contractor for Idaho National Laboratory, the United States' lead nuclear energy research and development laboratory. DOE’s Gateway for Accelerated Innovation in Nuclear program has twice awarded Lightbridge to support the development of Lightbridge Fuel over the past several years. Lightbridge is participating in two university-led studies through the DOE Nuclear Energy University Program at Massachusetts Institute of Technology and Texas A&M University. An extensive worldwide patent portfolio backs Lightbridge’s innovative fuel technology. Lightbridge is included in the Russell Microcap® Index. For more information, please visit www.ltbridge.com.
FACT-MASTER
3月前
LTBR: Lightbridge Announces Participation in Upcoming Industry Events
https://finance.yahoo.com/news/lightbridge-announces-participation-upcoming-industry-120000787.html
LTBR
+23.95%
RESTON, Va., Oct. 22, 2024 (GLOBE NEWSWIRE) -- Lightbridge Corporation (“Lightbridge”) (Nasdaq: LTBR), an advanced nuclear fuel technology company, today announced its participation in several upcoming key industry panels and provided an update on recent events.
Seth Grae, President & Chief Executive Officer of Lightbridge Corporation, commented, "We are at an exciting point in the nuclear industry, as recent investments from tech giants and surging interest in clean, reliable energy continue to shape the future of power generation. At Lightbridge, we’re proud to be at the forefront of these developments, contributing to the advancement of nuclear fuel technology that will play a critical role in powering tomorrow's data centers and meeting global energy demands. I look forward to sharing insights at these key industry events in the coming weeks and continuing to showcase how Lightbridge Fuel™ can drive innovation in the nuclear sector.”
Upcoming Events:
October 29, 2024 – Mr. Grae will participate in an American Nuclear Society (ANS) State of Nuclear webinar at 3:00 PM ET, discussing the latest trends in nuclear energy. A link to the webinar will be provided closer to the event date.
October 30, 2024 – Mr. Grae will speak on a panel at 12:00 PM in Washington, DC, hosted by the Global America Business Institute. The panel will focus on nuclear energy at COP29, exploring the role of nuclear in international climate initiatives.
November 5-6, 2024 – Lightbridge will participate in the World Economic Forum Advanced Energy Solutions CEO Meeting in Geneva, Switzerland, before Mr. Grae heads to COP29 in Baku, Azerbaijan. The meeting will discuss advanced energy solutions and will be a closed-door event with no public access.
November 12-15, 2024 – Mr. Grae will attend COP29 in Baku, Azerbaijan, as part of Week 1 of the climate summit, where he will engage with global leaders on the role of nuclear energy in addressing climate challenges. He will have a Blue Zone pass provided by the American Nuclear Society to access the diplomatic area where negotiations among the parties will take place.
November 18, 2024 – Mr. Grae will speak at the ANS Winter Meeting in Orlando, Florida, as part of the State of Nuclear panel at 1:00 PM ET. The panel will cover the impact of COP29 on the nuclear industry, with Mr. Grae sharing insights from his participation in the COP29 climate summit. https://www.ans.org/meetings/wc2024/session/view-2907/
Recent Events and Media Coverage:
On October 21, 2024, Mr. Grae was featured in a live interview on BNN Bloomberg’s “The Close”, hosted by Andrew Bell. The interview covered the growing demand for nuclear energy from major tech companies, seeking clean, 24/7 power sources to support their AI facilities and data centers, which has driven a surge in nuclear energy-related stocks. The full interview can be viewed on Lightbridge’s official YouTube channel at .
Lightbridge was mentioned in an article in the Financial Times on October 20, 2024, titled “Nuclear Energy Stocks Hit Record Highs on Surging Demand from AI,” highlighting the growing momentum behind nuclear energy, particularly with the surge in demand from tech giants like Amazon and Google, which have made significant investments in small modular reactors. https://www.ft.com/content/33eeadbe-edf4-40b5-b973-e76c570d0681
On October 18, 2024, Mr. Grae was featured in a live interview from the floor of the New York Stock Exchange on Schwab Network’s “Trading 360”, hosted by Diane King Hall. The interview covered important developments in the nuclear industry, including recent nuclear investments by tech giants such as Microsoft, Amazon, and Google. Discussions focused on how the growing demand for clean, reliable energy to power data centers positions nuclear power as a critical component of the energy mix. Mr. Grae also discussed the surge in nuclear stock prices, which have reached record highs due to increased investment from the tech sector, and how these trends drive the development of advanced nuclear technologies, such as Lightbridge Fuel™. The full interview can be viewed on Lightbridge’s official YouTube channel at .
Additionally, Lightbridge was mentioned in a Barron’s article on October 18, 2024, titled “Nuclear Energy Is Making a Comeback. A New Batch of Stocks to Play the Trend,” highlighting the resurgence of nuclear energy investments and identifying Lightbridge as a key player in the nuclear fuel development space. https://www.barrons.com/articles/nuclear-power-energy-stocks-db8ffb2f?mod=Searchresults
On October 15, 2024, Mr. Grae moderated the “Super Panel” at the inaugural World Nuclear Forum at Tennessee Tech University. This premier annual event brought together global leaders, innovators, and experts to promote excellence in nuclear energy through collaboration and shared knowledge. https://www.tntech.edu/research/world-nuclear-forum.php
About Lightbridge Corporation
Lightbridge Corporation (NASDAQ: LTBR) is focused on developing advanced nuclear fuel technology essential for delivering abundant, zero-emission, clean energy and providing energy security to the world. The Company is developing Lightbridge Fuel™, a proprietary next-generation nuclear fuel technology for existing light water reactors and pressurized heavy water reactors, significantly enhancing reactor safety, economics, and proliferation resistance. The Company is also developing Lightbridge Fuel for new small modular reactors (SMRs) to bring the same benefits plus load-following with renewables on a zero-carbon electric grid.
Lightbridge has entered into two long-term framework agreements with Battelle Energy Alliance LLC, the United States Department of Energy’s operating contractor for Idaho National Laboratory, the United States' lead nuclear energy research and development laboratory. DOE’s Gateway for Accelerated Innovation in Nuclear program has twice awarded Lightbridge to support the development of Lightbridge Fuel over the past several years. Lightbridge is participating in two university-led studies through the DOE Nuclear Energy University Program at Massachusetts Institute of Technology and Texas A&M University. An extensive worldwide patent portfolio backs Lightbridge’s innovative fuel technology. Lightbridge is included in the Russell Microcap® Index. For more information, please visit www.ltbridge.com.
FACT-MASTER
3月前
LTBR: From the 10Q - 08/01/2024
https://www.nasdaq.com/market-activity/stocks/ltbr/sec-filings
Project Task Statements - INL Project
On March 26, 2024, the Company and BEA entered into Modification No. 2 (Modification No. 2) to the project task statement (PTS) under the Strategic
Partnership Project Agreement (SPPA), dated December 9, 2022, as amended on May 23, 2023, by and between the Company and BEA. Pursuant to the
terms of Modification No. 2, the potential amounts payable by the Company to reimburse BEA for its expenses and employee time were increased by
approximately $0.6 million, bringing the total estimated cost for the work to be performed under the “umbrella” SPPA to $1.7 million.
After Modification No. 2, total cash payments from the Company to BEA under both Agreements were estimated at approximately $4.3 million (excluding
project contingencies) on a cost reimbursable basis over the performance periods under the initial releases.
As of June 30, 2024, the Company had approximately $2.8 million in outstanding PTSs to BEA relating to the R&D work being conducted under the SPPA
and “umbrella” Cooperative Research and Development Agreement (CRADA) at INL. Performance of work under these agreements may be terminated at
any time by either party, without any liability, after the effective date of termination, upon giving a thirty-day written notice under the SPPA and a sixty-day
written notice under the CRADA, to the other party. In the event of termination, the Company shall be responsible for BEA’s costs (including the closeout
costs), through the effective date of termination, but in no event shall the Company’s cost responsibility exceed the total estimated cost stated in each PTS
and any subsequent modification to the PTS.
Romania Feasibility Study of Lightbridge Fuel™ for use in CANDU reactors
On October 16, 2023, the Company engaged Institutul de Cercetari Nucleare Pite?ti, a subsidiary of Regia Autonoma Tehnologii pentru Energia Nucleara
(RATEN ICN) in Romania to perform an engineering study to assess the compatibility and suitability of Lightbridge Fuel™ for use in CANDU reactors.
On July 2, 2024, the Company and RATEN ICN agreed to a change order modifying the remaining scope, schedule, and total fee for the engineering study.
The revised total fee is now $0.2 million. As of June 30, 2024, the Company had approximately $0.1 million in remaining outstanding project
commitments to RATEN ICN, payable upon the acceptance of the final engineering study report by the Company.
FEED Study with Centrus Energy for a Lightbridge Pilot Fuel Fabrication Facility
On December 5, 2023, the Company entered into an agreement with Centrus Energy Corp. (Centrus Energy) to conduct a front-end engineering and design
(FEED) study to construct a Lightbridge Pilot Fuel Fabrication Facility (LPFFF) to manufacture Lightbridge Fuel™ using high-assay low-enriched
uranium (HALEU) at the American Centrifuge Plant in Piketon. In the second quarter of 2024, Centrus completed Phase 1 of the FEED Study and issued a
report.
On June 27, 2024, the Company and Centrus Energy agreed to a Change Order modifying the remaining scope, schedule, and total fee for the FEED study.
The revised total fee is now $0.3 million with $0.1 million as the remaining amount due to Centrus Energy, upon the acceptance of the final FEED study
report by the Company.